Blog Koma - Pada artikel kali ini kita akan membahas materi Penyelesaian Limit Tak Hingga. Limit tak hingga ini maksudnya bisa hasil limitnya adalah tak hingga $ \infty $ atau limit dimana variabelnya menuju tak hingga $ x \to \infty $. Untuk memudahkan, silahkan juga baca materi "Pengertian Limit Fungsi" dan "Penyelesaian Limit Fungsi Aljabar". Khusus pada limit tak hingga pada artikel ini kita akan lebih menitik beratkan pada fungsi aljabar saja. Untuk limit tak hingga fungsi trigonometri akan kita bahas pada artikel lain secara khusus dan lebih mendalam. Hasil Limitnya Tak hingga Suatu limit hasilnya tak hingga $\infty$ jika hasil limitnya semakin membesar menuju tak hingga, bisanya terjadi ketika pembaginya adalah 0 $ \frac{1}{0} = \infty $ . Berikut teorinya $ \displaystyle \lim_{x \to \, +0 } \frac{1}{x^n} = + \infty \, $ dan $ \, \displaystyle \lim_{x \to \, -0 } \frac{1}{x^n} = \left\{ \begin{array}{cc} +\infty & , \text{ untuk } \, n \, \text{ genap} \\ -\infty & , \text{ untuk } \, n \, \text{ ganjil} \end{array} \right. $ dengan $ n \, $ bilangan asli. Catatan Jika pangkatnya genap $n \, $ genap maka hasilnya selalu positif. Contoh 1. Tentukan nilai $ \displaystyle \lim_{x \to 2 } \frac{1}{x-2^2} \, $ ? Penyelesaian *. Berikut grafik dari fungsi $ fx = \frac{1}{x-2^2} $ Dari tabel terlihat bahwa untuk $ x \, $ mendekati 2, maka hasil fungsinya nilai $y $ semakin besar menuju tak hingga. Jadi, hasil dari $ \displaystyle \lim_{x \to 2 } \frac{1}{x-2^2} = \infty $ 2. Tentukan nilai limit bentuk berikut a. $ \displaystyle \lim_{x \to 5^+ } \frac{x+2}{x-5^5} \, \, \, $ b. $ \displaystyle \lim_{x \to 3^- } \frac{x}{x-3^8} \, \, \, $ c. $ \displaystyle \lim_{x \to 3^- } \frac{x}{x-3^7} $ Penyelesaian a. Karena $ x \to 5^+ \, $ artinya $ x \, $ mendekati 5 dari kanan, sehingga nilai $ x - 5 \, $ positif. $ \displaystyle \lim_{x \to 5^+ } \frac{x+2}{x-5^5} = \frac{5+2}{5^+ - 5^5} = \frac{7}{+0^5} = + \infty $ b. $ \displaystyle \lim_{x \to 3^- } \frac{x}{x-3^8} = \frac{3}{3^- - 3^8 } = \frac{3}{-0^8} = \frac{3}{0} = +\infty $ c. $ \displaystyle \lim_{x \to 3^- } \frac{x}{x-3^7} =\frac{3}{3^- - 3^7 } = \frac{3}{-0^7} = \frac{3}{-0} = -\infty $ Penyelesaian Limit di Tak Hingga Untuk menyelesaikan limit menuju tak hingga $ x \to \infty $ , kita gunakan limit dasarnya yaitu $ \, \, \displaystyle \lim_{x \to \infty } \frac{a}{x^n} = 0 $ dengan $ a \, $ bilangan real dan $ n \, $ bilangan asli. Artinya kita harus mengarahkan bentuk limit di tak hingga menjadi rumus dasar di atas dengan cara i. Buat fungsinya menjadi bentuk pecahan, jika bentuknya dalam akar maka kalikan dengan bentuk sekawannya merasionalkan. ii. Bagi variabelnya dengan pangkat tertinggi. Contoh 3. Tentukan hasil limit di tak hingga berikut a. $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} \, \, \, $ b. $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} \, \, \, $ c. $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } $ d. $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } \, \, \, $ e. $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} $ Penyelesaian a. Bagi dengan $ x^3 \, $ untuk pembilang dan penyebutnya. $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x^3 + 3x^2 + 5}{x^3}}{\frac{5x^3 - 4x + 1}{x^3} } \\ & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x^3}{x^3} + \frac{3x^2}{x^3} + \frac{5}{x^3} }{\frac{5x^3 }{x^3} - \frac{ 4x }{x^3} + \frac{ 1}{x^3} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{3}{x} + \frac{5}{x^3} }{5 - \frac{ 4 }{x^2} + \frac{ 1}{x^3} } \\ & = \frac{ 2 + \frac{3}{\infty} + \frac{5}{\infty ^3} }{5 - \frac{ 4 }{\infty ^2} + \frac{ 1}{\infty ^3} } \\ & = \frac{ 2 + 0 + 0 }{5 - 0 + 0 } \\ & = \frac{ 2 }{5 } \\ \end{align} $ Sehingga hasilnya $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} = \frac{ 2 }{5 } $ b. Bagi dengan $ x^8 \, $ untuk pembilang dan penyebutnya, $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} & = \displaystyle \lim_{x \to \infty } \frac{\frac{-2x^2 - 5}{x^8}}{\frac{5x^8 - 4x + 3}{x^8} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ \frac{-2}{x^6} - \frac{5}{x^8} }{ 5 - \frac{4}{x^7} + \frac{3}{x^8} } \\ & = \frac{ \frac{-2}{\infty ^6} - \frac{5}{\infty ^8} }{ 5 - \frac{4}{\infty ^7} + \frac{3}{\infty^8} } \\ & = \frac{ 0 - 0 }{ 5 - 0 + 0 } \\ & = \frac{ 0 }{ 5 } \\ & = 0 \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} = 0 $ c. Bagi dengan $ x^5 \, $ untuk pembilang dan penyebutnya, $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } & = \displaystyle \lim_{x \to \infty } \frac{\frac{x^5 - 2x^3 + 5x - 1}{x^5}}{\frac{3x^2 - 4x + 1 }{x^5}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 1 - \frac{2}{x^2} + \frac{5}{x^4} - \frac{1}{x^5} }{ \frac{3}{x^3} - \frac{4}{x^4} + \frac{1}{x^5} } \\ & = \frac{ 1 - \frac{2}{\infty ^2} + \frac{5}{\infty ^4} - \frac{1}{\infty ^5} }{ \frac{3}{\infty ^3} - \frac{4}{\infty ^4} + \frac{1}{\infty ^5} } \\ & = \frac{ 1 - 0 + 0 - 0 }{ 0 - 0 + 0 } \\ & = \frac{ 1 }{ 0} \\ & = \infty \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } = \infty $ d. Bagi dengan $ x \, $ untuk pembilang dan penyebutnya, $\begin{align} \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x + 1}{x}}{ \frac{\sqrt{9x^2 + 2x - 7}}{x} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \frac{\sqrt{9x^2 + 2x - 7}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \sqrt{\frac{9x^2 + 2x - 7}{x^2} } } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \sqrt{ 9 + \frac{2}{x} - \frac{7}{x^2} } } \\ & = \frac{ 2 + \frac{1}{\infty} }{ \sqrt{ 9 + \frac{2}{\infty} - \frac{7}{\infty ^2} } } \\ & = \frac{ 2 + 0 }{ \sqrt{ 9 + 0 - 0 } } \\ & = \frac{ 2 }{ \sqrt{ 9 } } \\ & = \frac{ 2 }{3} \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } = \frac{ 2 }{3} $ e. Kali sekawan agar terbentuk pecahan dan bagi $ x $ $ \begin{align} & \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} \\ & = \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} \times \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 4x^2 +2x-3 - 4x^2 - x + 3 }{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3x - 6 }{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ \frac{ 3x - 6 }{x}}{ \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{x} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \frac{\sqrt{4x^2 +2x-3} }{\sqrt{x^2}} + \frac{ \sqrt{4x^2 - x + 3}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \sqrt{4 +\frac{2}{x} - \frac{3}{x^2} } + \sqrt{4 - \frac{1}{x} + \frac{3}{x^2}} } \\ & = \frac{ 3 - \frac{6}{\infty} }{ \sqrt{4 +\frac{2}{\infty} - \frac{3}{\infty ^2} } + \sqrt{4 - \frac{1}{\infty} + \frac{3}{\infty ^2}} } \\ & = \frac{ 3 - 0}{ \sqrt{4 + 0 - 0 } + \sqrt{4 - 0 + 0 } } \\ & = \frac{ 3 }{ \sqrt{4 } + \sqrt{4 } } \\ & = \frac{ 3 }{ 2 + 2 } \\ & = \frac{ 3 }{ 4 } \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} = \frac{ 3 }{ 4 } $ Penyelesaian Limit di Tak Hingga Yang lebih praktis Berikut cara menyelesaikan limit di tak hingga yang lebih mudah $\clubsuit $ Limit tak hingga pecahan Misalkan fungsinya $ fx = ax^n + a_1x^{n-1} + ... \, $ dengan pangkat tertinggi $ n \, $ dan $ gx = bx^m + b_1 x^{m-1} + .... $ dengan pangkat tertinggi $ m \, $ , maka limit di tak hingganya $ \displaystyle \lim_{x \to \infty } \frac{ax^n + a_1x^{n-1} + ...}{bx^m + b_1 x^{m-1} + ....} \left\{ \begin{array}{ccc} = \frac{0}{b} & = 0 & , \text{untuk } n m \end{array} \right. $ Catatan Ambil koefisien pangkat tertingginya. $\clubsuit $ Limit tak hingga bentuk akar *. Bentuk pertama, $ \displaystyle \lim_{x \to \infty } \sqrt{ax^2 + bx + c } - \sqrt{ax^2 + px + q } = \frac{b-p}{2\sqrt{a}} $ *. Bentuk kedua, $ \displaystyle \lim_{x \to \infty } \sqrt{ax^n + bx^\frac{n}{2} + c } - \sqrt{ax^n + px^\frac{n}{2} + q } = \frac{b-p}{2\sqrt{a}} $ Pangkat didepan adalah dua kali pangkat kedua dan nilai $ a \, $ sama pada kedua akar. Contoh 4. Tentukan hasil limit di tak hingga dari soal nomor 3 di atas, a. $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} \, \, \, $ b. $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} \, \, \, $ c. $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } $ d. $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } \, \, \, $ e. $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} $ f. $ \displaystyle \lim_{x \to \infty } \sqrt{9x^8 +3x^4-3} - \sqrt{9x^8 + 5x^4 + 1} $ Penyelesaian a. Pangkat tertingginya $ x ^3 \, $ , artinya ambil koefisien $ x^3 $ , $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} = \frac{2}{5} $ b. Pangkat tertingginya $ x^8 \, $ , artinya ambil koefisien $ x^8 \, $, $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} = \displaystyle \lim_{x \to \infty } \frac{0x^8-2x^2 - 5}{5x^8 - 4x + 3} = \frac{0}{5} = 0 $ c. Pangkat tertingginya $ x^5 \, $ , artinya ambil koefisien $ x^5 $ , $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } = \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{0x^5 + 3x^2 - 4x + 1 } = \frac{1}{0} = \infty $ d. Pangkat tertingginya $ x \, $ , artinya ambil koefisien $ x $ , $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } = \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 } } = \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ 3x } = \frac{2}{3} $ e. $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} = \frac{b-p}{2\sqrt{a}} = \frac{2-1}{2\sqrt{4}} = \frac{3}{4} $ f. $ \displaystyle \lim_{x \to \infty } \sqrt{9x^8 +3x^4-3} - \sqrt{9x^8 + 5x^4 + 1} = \frac{b-p}{2\sqrt{a}} = \frac{3-5}{2\sqrt{9}} = \frac{-2}{6} = - \frac{1}{3} $ 5. Tentukan hasil limit tak hingga berikut ini, a. $ \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - x + 2 $ b. $ \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } $ c. $ \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} $ Penyelesaian a. Ubah terlebih dulu sehingga keduanya membentuk akar. $ \begin{align} \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - x + 2 & = \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - \sqrt{x + 2^2} \\ & = \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - \sqrt{x^2 + 4x + 4} \\ & = \frac{b-p}{2\sqrt{a}} \\ & = \frac{-5-4}{2\sqrt{1}} \\ \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - x + 2 & = \frac{-9}{2} \end{align} $ b. Ubah terlebih dulu sehingga keduanya membentuk akar. $ \begin{align} \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } & = \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } \\ & = \displaystyle \lim_{x \to \infty } \sqrt{2x - 3^2} - \sqrt{4x^2 +x - 7 } \\ & = \displaystyle \lim_{x \to \infty } \sqrt{4x^2-12x + 9} - \sqrt{4x^2 +x - 7 } \\ & = \frac{b-p}{2\sqrt{a}} \\ & = \frac{-12-1}{2\sqrt{4}} \\ \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } & = \frac{-13}{4} \end{align} $ c. Misalkan $ y = 5^x , \, $ untuk $ x \, $ menuju tak hingga, maka $ y \, $ juga menuju tak hingga, kemudian ambil koefisien pangkat tertingginya $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} & = \displaystyle \lim_{5^x \to 5^\infty } \frac{5^x + 3 }{5^{x+2} - 7} \\ & = \displaystyle \lim_{5^x \to 5^\infty } \frac{5^x + 3 }{5^x . 5^2 - 7} \\ & = \displaystyle \lim_{y \to \infty } \frac{y + 3 }{y . 5^2 - 7} \\ & = \displaystyle \lim_{y \to \infty } \frac{y + 3 }{25y - 7} \\ \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} & = \frac{1}{25} \end{align} $ Silahkan teman-teman juga simak dan pelajari materi limit tak hingga dengan fungsi trigonometri yaitu pada artkel "Limit Tak Hingga Fungsi Trigonometri".Selain itu, ada juga kegunaan dari limit fungsi tak hingga adalah untuk menentukan persamaan asimtot mendatar suatu fungsi.
Bentuklimit tak hingga akar pangkat 3 yang akan kita bahas yaitu yang bentuknya sebagai berikut: lim x β β ( a x 3 + b x 2 + c x + d 3 β a x 3 + p x 2 + q x + r 3) Jika kita substitusi akan diperoleh β β β (bentuk tak tentu). Tentu saja penyelesaiannya bukan itu. Kita tidak bisa menghilangkan bentuk akar dengan cara kali sekawanKelas 11 SMALimit FungsiLimit Fungsi Aljabar di Titik TertentuLimit Fungsi Aljabar di Titik TertentuLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0048Nilai lim x->4 4x^2+5x+1=0232Nilai limit x->0 4x/1-2x^1/2-1+2x^1/2=.... 0138Jika fx=x^2-8x+8^1/3, maka nilai dari lim x->0 1/4...0150Nilai lim x->2 x^2-4/akarx^2+5-3=...Teks videoDi sini ada pertanyaan tentang limit x menuju tak hingga bentuk akar kurang akar sehingga bentuk X yang disini kita Tuliskan menjadi X ^ 22 kemudian diakarkan sama saja nilainya 3 bentuk ini kita Tuliskan nggak jadi limit x menuju tak hingga akar ini kita operasikan ya x + a x + B menjadi x kuadrat ditambah di sini ada aku disini ada BX kita tarik keluar berarti menjadi X dikali a. + b kemudian ditambah dengan a b dikurangi dengan akar x kuadrat bentuk ini kita akan kalikan dengan akar sekawannya limit x menuju tak hingga Jadi kalau ada bentuk akar A min akar B kita kalikan dengan kawannya menjadi akar a plusper akar a + akar B menjadi bentuk A min b per akar a + akar b maka bentuk ini kita ke akarnya menjadi x kuadrat ditambah x * a + b ditambah a b dikurangi x kuadrat per 2 x akar x kuadrat + x * a + b ditambah dengan ditambah dengan akar x kuadrat Ini sama ini kita coret sehingga bentuk ini sudah bentuk pecahan kita kalikan dengan bentuk 1 per dari pangkat paling tinggi nya disini Budi penyebutnya pangkat paling tinggi nya adalah x ^ 2 diakarkan jadi ini adalah seperx kuadrat per akar x kuadrat sama saja dengan seperti sini kita kalikan masuk menjadi limit x menuju tak hingga ini nih sama habis tinggal a + b ditambah berarti ini AB per x nya Nikita kali masuk ya Jadi kalau ada akar x berakar sama saja akar x per y ini kali masuk sehingga kini semuanya dibagi x kuadrat maka bentuknya kita Tuliskan menjadi x kuadrat / x kuadrat berarti 1 ditambah X dibagi x kuadrat berarti a + b x kemudian ada bentuk AB x kuadratditambah dengan 1 akar x + akar x kuadrat per akar 1 maka kita masuk nilai x nya jika kita mendapat 1 per tak hingga nilainya adalah sama dengan nol sehingga bentuknya kalau kita masukkan tak hingganya batik adalah a + b AB per tak hingga per tak hingga berarti 0 per akar 1 + AB hingga hingga batin 0 jika ditambah akar 1 maka ini a + b per β 11 + 1 a + b per 2 maka pilihan kita adalah yang c sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Atausifat dari suatu barisan saat indeks mendekati tak hingga. Soal dan pembahasan limit tak hingga bentuk akar 1 3 posted june 19 2013 february 18 2020 rudolph lestrange berikut adalah 3 buah soal limit tak hingga yang jika disubtitusi langsung menghasilkan bentuk tak tentu. Tips Mengerjakan Soal Limit Fungsi Aljabar Bentuk Tak Itulah yangο»ΏKelas 11 SMALimit FungsiLimit Fungsi Aljabar di Tak HinggaLimit Fungsi Aljabar di Tak HinggaLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0334lim x ->tak hingga 2x+3^2-7/8x^2-1=....0319lim x->tak hingga x+2-akarx^2+x+1=...0137 Nilai lim x-> tak hingga 2x-33x+1/2x^2+x+1 adalah..0649limit x mendekati tak hingga akar4x^2+x-1-2x+1=...Teks videoJika kalian menemukan soal seperti ini pertama-tama kita harus mengerti terlebih dahulu konsep dasar dari limit debit ini merupakan limit x menuju Infinity atau X menuju tak nggak tahu teman saya akan menjelaskan terlebih dahulu. Jika ada bentuk limit dari X menuju Infinity atau tak hingga yang bentuknya adalah seperti ini akar dari AX kuadrat + BX + C dikurang dengan akar dari PX + Q x x p x kuadrat + QX dan + r Dan a = p syaratnya adalah a = p. Maka hasilnya otomatis langsung menjadi B Min Q per 2 dikalikan akar dari a ini adalah bentuk yang akan kita gunakan untuk mengerjakan soal yang di atas utama kita tulis dulu saja limit x menuju Infinity dari akar x + p dikalikan dengan x + kita langsung kalikan saja sehingga hasilnya menjadi x kuadrat + PX + QX + PQ oke, lalu dikurang dengan x x kita dapat Ubah menjadi akar dari X kuadrat akar-akar dari X kuadrat hasilnya adalah x dari sini kita Sederhanakan terlebih lagi jadi limit x menuju Infinity akar x kuadrat P dan Q nya kita gabungkan jadi + p + q dalam kurung dikalikan dengan x ditambah dengan p * p * q dikurang dengan kode-kode ini Dia tidak memiliki 0 dikali X Karena tidak memiliki banyaknya Halo dikurang 0 juga ini menjadi patokan kita untuk patokan P Q dan R nya Langsung saja kita kerjakan dengan bentuk ini. hasilnya menjadi B Min q, b nya adalah p + q, maka p + q dikurang dengan Q nya adalah 0 x kurang 0 dibagi semuanya dengan 2 dikalikan dengan akar dari a karena a = p maka kita ambil saya salah satunya dan yang koefisien dari X kuadrat nya adalah a a adalah 1 Maka hasilnya adalah p + q dibagi dengan 2 x β 1 adalah 2 * 1, maka 2 sesuai dengan opsi yang D jika kita Ubah menjadi 1 per 2 dikalikan dengan p + q sadar oxide pada soal sampai jumpa pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul EdumatikNet - Ini adalah artikel yang akan membahas cara menyelesaikan limit tak hingga bentuk akar. Mulai dari limit tak hingga bentuk akar 2 suku sampai limit tak hingga bentuk akar 3 suku. Cara Menyelesaikan Limit Mendekati Nol - 31,999 views; Menyelesaikan Limit dengan Cara Substitusi - 28,127 views; TERBARU. Soal Pemantapan TPS